Inequality

https://www.linkedin.com/groups/8313943/8313943-6361896009064419332
Let a, b, c, d and r be positive real numbers such that
$r=(a b c d)^{\wedge 1 / 4} \geq 1$, prove that
$1 /(1+a)^{2}+1 /(1+b)^{2}+1 /(1+c)^{2}+1 /(1+d)^{2} \geq 4 /(1+r)^{2}$.
Remark. It is the Problem 2969, Proposed by Vasile Cîrtoaje, University of Ploiesti,Romania
Let a, b, c, d, and r be positive real numbers such that $r=\sqrt[4]{a b c d} \geq 1$.
Prove that
(1)

$$
\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}}+\frac{1}{(1+d)^{2}} \geq \frac{4}{(1+r)^{2}} .
$$

Solution by Arkady Alt, San Jose ,California, USA.

I suggest, as generalization of inequality (1), the following

Theorem.

For any natural $n \geq 2$ positive $a_{1}, a_{2}, \ldots, a_{n}$, such that $a_{1} a_{2} \ldots a_{n}=r^{n}$ inequality
(2) $\frac{1}{\left(1+a_{1}\right)^{2}}+\frac{1}{\left(1+a_{2}\right)^{2}}+\ldots+\frac{1}{\left(1+a_{n}\right)^{2}} \geq \frac{n}{(1+r)^{2}}$
holds iff $r \geq \max \left\{\frac{1}{2}, \sqrt{n}-1\right\}$.

Proof.

1.Necessety.

From supposition that this inequality is valid for all $a_{1}, a_{2}, \ldots, a_{n}>0$ with
$a_{1} a_{2} \ldots a_{n}=r^{n}$ and by setting $a_{1}=a_{2}=\ldots=a_{n-1}=m, a_{n}=\frac{r^{n}}{m}, m \in \mathbb{N}$ we obtain inequality
$\frac{n-1}{(1+m)^{2}}+\frac{m^{2(n-1)}}{\left(m^{n-1}+r^{n}\right)^{2}} \geq \frac{n}{(1+r)^{2}}$ which holds for all natural m.
That yield $\lim _{m \rightarrow \infty}\left(\frac{n-1}{(1+m)^{2}}+\frac{m^{2(n-1)}}{\left(m^{n-1}+r^{n}\right)^{2}}\right)=1 \geq \frac{n}{(1+r)^{2}} \Rightarrow r \geq \sqrt{n}-1$.
Since $\sqrt{n}-1>\frac{1}{2}$ for any natural $n>2$ and $\sqrt{2}-1<\frac{1}{2}$ then case $n=2$
should be considered separately. Another reason to do this is that case $n=2$ we need as base of Math Induction in the proof of Sufficiency.
Suppose that for any $a, b>0$ such that $a b=r^{2}$ inequality
(3) $\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}} \geq \frac{2}{(1+r)^{2}}$
holds. Then $r \geq \sqrt{2}-1$ accordingly to considered above general case.
Let $x:=a+b$. Then $x \geq 2 r$ (inequality which provide the equivalence of the
transition to $(x, r)-$ notation) and inequality (3) becomes:
$\frac{2+2 x+x^{2}-2 r^{2}}{\left(1+r^{2}+x\right)^{2}} \geq \frac{2}{(1+r)^{2}} \Leftrightarrow(1+r)^{2}\left(2+2 x+x^{2}-2 r^{2}\right)-2\left(1+x+r^{2}\right)^{2} \geq 0 \Leftrightarrow$
(4) $(x-2 r)\left(x\left(r^{2}+2 r-1\right)+2\left(r^{3}+r^{2}+r-1\right)\right) \geq 0$.

Since $r^{2}+2 r-1 \geq 0$ (that follows from $r \geq \sqrt{2}-1$) and $x \geq 2 r$ then inequality (4) must
be
fulfilled for $x=2 r$. That is we obtain $2 r\left(r^{2}+2 r-1\right)+2\left(r^{3}+r^{2}+r-1\right) \geq 0 \Leftrightarrow$ $2(2 r-1)(r+1)^{2} \Leftrightarrow r \geq 1 / 2$.
Also we can see that if $r \geq 1 / 2$ then $(x-2 r)\left(x\left(r^{2}+2 r-1\right)+2\left(r^{3}+r^{2}+r-1\right)\right) \geq$
$(x-2 r)\left(2 r\left(r^{2}+2 r-1\right)+2\left(r^{3}+r^{2}+r-1\right)\right)=2(x-2 r)(2 r-1)(r+1)^{2} \geq 0$.
Thus, (3) holds for for any $a, b>0$ such that $a b=r^{2}$ iff $r \geq 1 / 2$.
2. Sufficiency.(Math. Induction by $n \geq 2$).

Since base of math. induction already proved we will pass to the step of math induction.
Let $a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}>0$ and $a_{1} a_{2} \ldots a_{n+1}=r^{n+1}$, where $r \geq \sqrt{n+1}-1$.
Due to the symmetry of the inequality we can suppose that

$$
a_{1} \geq a_{2} \geq \ldots \geq a_{n} \geq a_{n+1}>0 .
$$

Let $x:=\sqrt[n]{a_{1} a_{2} \ldots a_{n}}$ then $a_{n+1}=\frac{r^{n+1}}{x^{n}}$ and $x \geq a_{n+1} \Leftrightarrow x^{n+1} \geq r^{n+1} \Leftrightarrow x \geq r$.
Then $x \geq \sqrt{n+1}-1>\sqrt{n}-1$ and by supposition of M.I. we have inequality

$$
\frac{1}{\left(1+a_{1}\right)^{2}}+\frac{1}{\left(1+a_{2}\right)^{2}}+\ldots+\frac{1}{\left(1+a_{n}\right)^{2}} \geq \frac{n}{(1+x)^{2}} . \text { Therefore, }
$$

$$
\frac{1}{\left(1+a_{1}\right)^{2}}+\frac{1}{\left(1+a_{2}\right)^{2}}+\ldots+\frac{1}{\left(1+a_{n}\right)^{2}}+\frac{1}{\left(1+a_{n+1}\right)^{2}} \geq \frac{n}{(1+x)^{2}}+\frac{x^{2 n}}{\left(x^{n}+r^{n+1}\right)^{2}},
$$

and and it remains to prove that

$$
\frac{n}{(1+x)^{2}}+\frac{x^{2 n}}{\left(x^{n}+r^{n+1}\right)^{2}} \geq \frac{n+1}{(1+r)^{2}} \text { for all } x \geq r \geq \sqrt{n+1}-1 .
$$

Let $h(x):=\frac{n}{(1+x)^{2}}+\frac{x^{2 n}}{\left(x^{n}+r^{n+1}\right)^{2}}$. Then

$$
h^{\prime}(x)=\frac{2 n\left(x^{n+1}-r^{n+1}\right)\left(x^{n+1} r^{n+1}+3 x^{n} r^{n+1}+r^{2 n+2}-x^{2 n-1}\right)}{(1+x)^{3}\left(x^{n}+r^{n+1}\right)^{3}} .
$$

Now everything depend on the behavior of polynomial

$$
P_{n}(x):=x^{n+1} r^{n+1}+3 x^{n} r^{n+1}+r^{2 n+2}-x^{2 n-1} .
$$

Note, that $x^{n+1} r^{n+1}+3 x^{n} r^{n+1}+r^{2 n+2}-x^{2 n-1}=0 \Leftrightarrow r^{n+1}+\frac{3 r^{n+1}}{x}+\frac{r^{2 n+2}}{x^{n+1}}-x^{n-2}=0$.
Let $\varphi(x):=r^{n+1}+\frac{3 r^{n+1}}{x}+\frac{r^{2 n+2}}{x^{n+1}}-x^{n-2}$.
Since $r \geq \sqrt{n+1}-1>\frac{1}{2}$ for $n \geq 2$, we have $P_{n}(r)=2 r^{2 n+2}+3 r^{2 n+1}-r^{2 n-1}=$ $r^{2 n-1}\left(2 r^{3}+3 r^{2}-1\right)=2(r+1)^{2}(2 r-1)>0 \Leftrightarrow \varphi(r)>0$.
Since $\varphi(x)$ is a continuous function on $(0, \infty), \varphi(\infty) \varphi(r)<0$ and $\varphi(x)$ strictly decreasing on $[r, \infty)$, there is only one point $x_{0} \in(r, \infty)$ such that $\varphi\left(x_{0}\right)=0 \Leftrightarrow P_{n}\left(x_{0}\right)=0$.
Moreover $\varphi(x)>\varphi\left(x_{0}\right)=0 \Leftrightarrow P_{n}(x)>0$ for all $x \in\left[r, x_{0}\right)$ and
$0=\varphi\left(x_{0}\right)>\varphi(x) \Leftrightarrow P_{n}(x)<0$ for all $x \in\left(x_{0}, \infty\right)$.
Since $\min _{x \in\left[r, x_{0}\right]} h(x)=h(r)=\frac{n}{(1+r)^{2}}+\frac{r^{2 n}}{\left(r^{n}+r^{n+1}\right)^{2}}=\frac{n+1}{(1+r)^{2}}$ and for
any $x \in\left[x_{0}, \infty\right) h(x)>\lim _{x \rightarrow \infty} h(x)=1 \geq \frac{n+1}{(1+r)^{2}}=h(r)$ we obtain

$$
\min _{x \in[r, \infty)} h(x)=h(r)=\frac{n+1}{(1+r)^{2}} .
$$

